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The behaviour of internal gravity waves near a critical level is investigated by 
means of a transient two dimensional finite difference model. All the important 
non-linear, viscosity and thermal conduction terms are included, but the rota- 
tional terms are omitted and the perturbations are assumed to be incompressible. 
For Richardson numbers greater than 2-0 the interaction of the incident wave 
and the mean flow is largely as predicted by the linear theory-very little of the 
incident wave penetrates through the critical level and almost all of the wave’s 
energy and momentum are absorbed by changes in the original wind. However, 
these changes in the wind are centred above the critical level, so that the change 
in the wind has only a small effect on the height of the critical level. For Richard- 
son numbers less than 2.0 and greater than 0-25 a significant fraction of the 
incident wave is reflected, part of which could have been predicted by the linear 
theory. For these stable Richardson numbers a steady state is apparently reached 
where the maximum wind change continues to grow slowly, but the minimum 
Richardson number and wave magnitudes remain constant. This condition 
represents a balance between the diffusion outward of the added momentum and 
the rate at which it is absorbed. For Richardson numbers less than 0.25, over- 
reflexion, predicted from the linear theory, is observed, but because the system 
is dynamically unstable no over-reflecting steady state is ever reached. 

1. Introduction 
The height at which the horizontal component of the phase velocity of an 

internal gravity wave is equal to the wind speed (both being measured relative 
to the ground) is called a singular level or a critical level. At this height the 
irrotational, inviscid adiabatic, linearized equations are singular and the Doppler 
or intrinsic frequency is zero. This simple set of equations, at  this height, is then 
an inadequate approximation t o  the real physical world. This inadequacy is 
confirmed by the fact that this set of equations predicts infinite values for the 
perturbation wave density and horizontal motion at a critical level. 

The implications of the irrotational, inviscid, adiabatic, linearized equations 
for internal gravity wave behaviour near a critical level have been explored by 
Bretherton (1966), Booker & Bretherton (1967) and Jones (1968). These analyses 
have been extended by Jones (1967) to include the Coriolis force but this in- 
clusion does not remove the singularity. The singularity may be removed by 
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the inclusion of the thermal conduction and viscous terms, or by the inclusion of 
the non-linear terms. Hazel’s (1967) linear analysis of the set of equations in which 
the viscosity and conduction terms were included showed that the Reynolds 
stress or the vertical flux of horizontal momentum of a wave incident on a 
critical level was attenuated almost exactly by the factor 

.f = exp [277(Ric - 0.25)*] 

given by Booker & Bretherton (1967). Ri,is the Richardson number at  the critical 
level. 

In  the present report the above results are extended by the inclusion in the 
set of equations of all the important non-linear terms. The Coriolis terms, how- 
ever, could not be included. This set of equations is analytically intractable, so 
the investigation is carried out by means of a finite-difference model. An un- 
perturbed atmosphere containing a shear layer is set up and then a wave for 
which this shear layer contains a critical level is allowed to propagate into the 
shear layer and interact with the mean flow there. For computational reasons 
the wave perturbations were assumed to be incompressible. This is not a serious 
restriction since it can be shown that the compressible equations approach ever 
closer to the incompressible equations as a critical level is approached. 

2. The mathematical basis of the model 
The equations on which this model is based are in the streamfunction vorticity 

form : 

where x = east-west position, positive eastward, z = vertical position, positive 
upward, w = w(x, x ,  t )  = vertical perturbation motion, u = u(x,  z, t )  = horizontal 
perturbation motion, U = U ( z )  = initial horizontal motion (original wind), 
U = U+u = total horizontal motion, K = coefficient of thermometric con- 
ductivity, ,u = coefficient of dynamic viscosity, = vorticity, p = p(x,  z, t )  = per- 
turbation density, p = p ( z )  = ambient density and g is the acceleration due to 
gravity. Note that 31/- and { are formed from momentum variables rather than 
from the more commonly used velocity variables and that U is a function of z 
only, and it is usually taken to be a piecewise linear function so that d%ldz2 may 
be ignored. 

By using momentum variables throughout, equations (1) can be derived in 
a straightforward manner from Newton’s law and the conservation equations : 
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ap -gp+yV2u, 
- Dw 
P z  = -z 
- a (Pu)+&w) = 0, 
ax 

where ' = BruntrVliisalii frequency, 

p = p(q 2, t) = perturbationpressure andl, = p ( z )  = ambient pressure. The back- 
ground pressure and density have been removed from equation ( 2  b )  by means of 
the hydrostatic equation. Equation ( 2 c )  is used instead of the more common 
V .v = 0, where v = a,u+ a,w = perturbation velocity, because the additional 
term w(dj7/dz) was about one-tenth the size of the other two terms in the linear 
and weakly non-linear regions. (The exact relative size will of course depend on 
the vertical wavelength.) Thus the background atmosphere remains compressible 
while the perturbations are incompressible. In  the adiabatic equation ( 2 4  the 
speed of sound has been allowed to approach infinity thereby eliminating the 
pressure terms and acoustic waves. This allows the use of much larger time steps 
than those which could be used if the acoustic waves were included. Because 
linear theory predicts that the perturbation pressure p becomes increasingly 
small as a critical level is approached the absence or presence of these pressure 
terms should not markedly affect the interactions near a critical level. 

Although the initial wind ;ii is not allowed to change in time this in no way 
restricts the non-linear interactions. The total wind is U = ?i + u and a change in 
the wind appears as that portion of u which is independent of x. The stream 
function and the vorticity are considerably simplified by this division of the 
total horizontal motion. Those non-linear terms which depend on the size of the 
perturbation density with respect to the background density have not been 
included here. A thorough analysis showed that they were not important at low 
altitudes. 

The Coriolis terms have not been included in Newton's law because three- 
dimensional models are not feasible at this time. According to Jones (1967) the 
addition of only the Coriolis terms to the linear, inviscid, irrotational equations 
does not remove the singularity, and does not much alter the basic wave be- 
haviour from that predicted without the Coriolis force. 

It should be noted that if all the lengths and velocities in (1) or (2)) and g are 
multiplied by some factor F and y, K ,  and 9 are multiplied by F2, then the 
magnitudes of all the equations are unchanged. Consequently the results of this 
model are largely independent of the wavelengths used. Because of the use of (1)) 
the waves inherent in this model do not possess the exp ( z / 2 H )  growth which 
characterizes internal gravity waves when the compressibility is included or 
when the regular incompressible system of equations is used and the Boussinesq 
approximation is not made. Since this is an investigation of interactions which 
occur in a height range that is a fraction of a scale height this lack of exponential 
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growth is no drawback. In  the derivation of the vorticity equation the x de- 
pendence of the ambient density p has not been ignored anywhere and all the 
terms involving dpldz have been retained, so it is not strictly correct to say that 
the Boussinesq approximation has been made. Nevertheless, in some important 
respects the resulting equations are equivalent to the regular incompressible 
system of equations when the Boussinesq approximation has been made. 

3. The finite-difference model 
The finite-difference model was originally closely based on that of Foldvik & 

Wurtele (1967) but in the course of its development many changes have been 
made. The grid system is staggered as shown in table 1. In  an ‘expanded region’ 
around the critical level the value of Az is smaller than that used elsewhere in 
the model. This reduction is necessary in order to have the source and the critical 

. d I ,  J )  ~ ( 1 ,  J )  p ( I +  1 ,  J )  

&(I,  J )  [(I + 1 - 4  
‘ a  X a 

TABLE 1 .  Staggered grid system. I = integer denoting x position, 
J = integer denoting z position 

level separated by more than half the vertical wavelength and still have sufficient 
resolution near the critical level. (The use of the fine vertical spacing throughout 
the model would waste much computer time. If the source and the shear zone 
are not separated by one half the vertical wavelength or more the shear zone is 
not initially free of perturbations.) 

All the non-linear critical level interactions took place in the expanded region; 
the region with large Ax was used only to allow an incoming wave to be set up 
and to allow propagation away from the interaction region. The results reported 
here were obtained using a model with Az = 200 m outside the expanded region 
and Az = 25 m inside the expanded region. The effect of varying Az both inside 
and outside the expanded region was explored, and figure 1 compares the mag- 
nitude of the fundamental and the constant components of the horizontal motion 
at  t = 4350 sec for three different vertical spacings. While differences are evident, 
they are not considered to be significant. 

Large discontinuities in the wave variables caused by the abrupt change of 
AZ at the boundary of the expanded region were found to occur only when there 
were large non-linear interactions occurring a t  that height. By making the 
expanded region large enough to more than include all of the height range in 
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which non-linear interactions were taking place between the wave and the 
mean flow these problems were avoided. The exact extent of the expanded region 
did not affect the results. For example, with a shear region extending from 2000 
to 2800 m, a case with the region from 1800 to 3600 m expanded was compared 
with a case with the region from 2000 to 3200 m expanded, and differences were 
found to be a few per cent at most. This agreement also indicates that reflexion 
from the boundary of the expanded region is not significant. 

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 
Horizontal perturbation motion (m/sec) Horizontal perturbation motion (m/sec) 

FIGURE 1. Dependence of the fundamental, (a), and constant, (a), on the vertical spacing. 

--- , AZ = 100, 12.5. 
t = 4350 see; S, = 1.125 m/sec; Ri = 0.53; - , AZ = 200, 25; - --, AZ =z 100, 25; 

Since the second and higher harmonics are propagating only for a narrow 
range of wind speeds near the centre of the shear layer, disturbances with short 
vertical extent which would be greatly affected by the change in Az become 
evanescent a t  heights near those a t  which they were generated and so are quite 
small a t  the boundary of the expanded region. It was not possible to try the 
model with a uniform Az = 25 m throughout to assess all the effects that might 
be due to the presence of the expanded region because the size of the computer 
memory did not permit placing the source far enough from the shear layer. 
However, a case was run with a uniform Az of 100 m and, although this spacing 
was too coarse to model the region around the critical level accurately, the results 
were in qualitative agreement with the other cases. 

The effects of varying the values of Ax have also been investigated. The model 
has been run with eight, sixteen and thirty-two points per horizontal wavelength. 
(The fundamental wavelength A, or the wavelength of the source is meant unless 
otherwise specified.) The rate of non-linear interactions increases with the number 
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of points per horizontal wavelength. With only eight points per wavelength the 
model is obviously of marginal accuracy. Since At must be reduced when Ax is 
reduced, the computation time is proportional to the square of the number of 
points per wavelength and the thirty-two points per wavelength case took so 
long to run that only two runs of moderate length were deemed justifiable. 
Comparison of the sixteen and thirty-two point cases showed that the basic 
nature of the development of the critical level interactions did not differ although 
the rates of the non-linear interactions varied by about 10 yo between the two 
models. The finite-difference model was tested for insensitivity to the direction 
of wave propagation by running two cases which were identical except that the 
wave and wind were moving to the right in one case and to the left in the other. 
The results were identical to three significant figures. 

The partial derivatives in equations (1 a) ,  ( 1  b )  and (1 d )  are transformed into 
centred finite differences in a straightforward manner. For example, with 
x = IAx, z = JAz and t = LAt, the first three terms in equation (1 a)  are treated 
as follows: 

a</at + [[ ( I ,  J ,  L + 1) - <(I,  J ,  L - I)]/’ZAt, 

a(Z<)/ax + ‘ilE((1-i- 1, J ,  L)  - <(I - 1, J ,  L ) ] / ~ A x ,  

The only exception to the centring of the finite differences in time and space is 
that the damping terms ,uV2(</j-j) and KVZp are evaluated at t = ( L  - 1)  At for 
stability reasons. 

After ( ( I ,  J ,  L + 1) has been found for all I ,  J from the finite-difference form 
of (1 a)  the stream function $is found from (1 c) and then, to complete the advance 
of one time step, the momentum variables are found from ( I d ) .  Early in this 
project Poisson’s equation was solved for $ by relaxation as Foldvik & Wurtele 
(1967) had done. When the smaller value of Az around the critical level was 
introduced, however, the relaxation failed to converge. T. R. Madden (personal 
communication) suggested tha8t Poisson’s equation be solved by means of Fourier 
analysis and synthesis. In  this method each row of vorticity points is treated as 
a source function in an otherwise source-free region and the analytically de- 
termined solutions for each row are then summed. The number of points in the 
horizontal, however, is required to be an integer power of two so that the fastest 
Fourier transform methods can be used. 

Amoving top boundary was an unsatisfactory source because the perturbations 
are incompressible in this system and the motions so introduced filled the model 
at once. A line vorticity source does not present such problems. At each step, 
then, before Poisson’s equation is solved, the values of 6 in the chosen row are 
replaced by 

where k is the horizontal wavenumber, w is the wave frequency (radians) relative 
to the ground and r is the wave period. Because it is <Az which actually enters 

f;, COS ( E X  - wt) = t s C O S  [27f(X/h,) - ( t / T ) ] ,  
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the solution of Poisson’s equation, so that the source strength 8, is independent 
of the vertical spacing, 6, = S,/Ax is used where S, is independent of the spacing. 
S, has the units of velocity and is roughly twice the magnitude of perturbation 
velocities developed in the case of propagation into an infinite medium. Since 
the experimental records obtained at  Massachusetts Institute of Technology 
have been associated with waves propagating down to the ground from the jet 
stream (Madden & Claerbout 1968), the source has been placed at  the top of 
the model and the wave which it generates travels down through a region of 
constant wind into the shear zone. 

Boundaries in the horizontal have been avoided by using cyclical boundary 
conditions. The repetition or cyclical length of the model is A,, the wavelength of 
the source. In  the vertical, a rigid surface upon which w = 0 or @ = constant is 
the natural lower boundary. The upper vertical boundary presents more prob- 
lems. A rigid boundary causes reflexions and a free surface upon which p = con- 
stant is difficult to incorporate into the model because the pressure has been 
eliminated from the equations. A steady-state outgoing-wave condition imposed 
at  the top boundary gave poor results with the transient waves in the early 
stages of this model. The best results have been obtained by reflecting the top 
portion of the model around the source. In  the solution of Poisson’s equation @ 
is the summation of the contributions from each row of 6 points. To reflect the 
top portion of the model about the source, the contributions from non-existent 
rows of E above the source are included in this summation and the first row above 
the source is taken to have the same values of 6 as the first row below the source, 
the second row above the source to have the same values as the second row below 
the source and so on. Because the importance of the contribution from a row of 6 
values decreases as its distance from the height at  which @ is to be evaluated 
increases and because @ is never evaluated above the source, the inclusion of 
ten or twenty rows of above the source in the summation for @ is sufficient. 
This treatment, suggested by T. R. Madden (personal communication), allows 
the waves to propagate upward just as they do downward. Effects due to  waves 
entering the model from the top boundary have not been noticed. 

The centred time step or leap-frog method has been used throughout this 
work. The occasional forward time step used by Foldvik & Wurtele (1967) was 
slightly detrimental in this project. The Adams-Bashforth method (Lilly 1965) 
was also tried but it was no more accurate or stable than the leap-frog method. 
The stability limit for the linearized finite-difference scheme was determined by 
the methods of Richtmyer (1957). The model was tested for accuracy by 
eliminating the wind and the non-linear and damping terms, placing a rigid 
boundary on the top of the model and initially inserting a standing wave into the 
model. The model at  any later time can then be compared with the linear solu- 
tions. When the time step At was chosen to minimize the error, the average 
normalized error grew to 14 yo after twenty wave periods. Whether the value of 
At was chosen to minimize the error or not, the error was mainly due to a phase 
shift, the error in wave magnitude remaining less than a few per cent. 

The eddy values initially used for the dynamic viscosity p and the thermo- 
metric conductivity K were too small to eliminate the non-linear aliasing errors 
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which occurred after the wave motion in the smaller wavelengths had reached a 
sizeable fraction of the wave motion in the fundamental. The damping co- 
efficients, therefore, were adjusted upward until these aliasing errors disappeared. 
No change in the interactions near the critical level were noticed when the 
damping terms were changed by an order of magnitude. 

4. Results 
A thorough discussion of the results of this finite-difference model requires 

a brief review of the predictions which can be made from the linearized equations. 
The gravity wave, propagating downward in a region where ;li > up, = w/k,  will 
have negative vertical components of the phase and group velocities. The 
Reynolds stress, taken here to be the product puw averaged over A,, and the 
vertical energy flux density will be positive indicating a downward transfer of 
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FIGURE 2 a d  For legend see facing page. 
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negative horizontal momentum and negative energy density. Absorption of all 
or part of the wave will therefore decrease the wind near the critical level. The 
Reynolds stress and kinetic energy of the wave are expected to be attenuated 
by the factor f mentioned in the introduction. In  applying this factor to the 
kinetic energy (but not to the Reynolds stress) the energies must be compared 
a t  heights on either side of the critical level where I;iz - wDZ1 is the same. In  detail, 
the linearized equation predicts that A,cc Q; u and pcc l/Q*, and w and 
p cc 524, where B = Doppler or intrinsic frequency, relative to the local 
fluid = k(v,,-ii) -+ 0 as a critical level is approached and A, = vertical wave- 
length. This increase in u and decrease in A, are responsible for the importance 
of the non-linear terms and the eventual inapplicability of all analyses based on 
the linearized equations. 
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FIGURE 2. Contour plots of u, the horizontal component of the perturbation velocity. 
S, = 1.125rn/secy Ri = 0.53, (a) t = 390sec, ( b )  t = 750 see, (c) I = llOOseo, (d )  
t = 1470sec, (e) t = 1830sec, (f) t = 2190sec, (g) y = 2550sec, (h) t = 4350sec. 
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The internal gravity waves recorded on the microbarograph array in eastern 
Massachusetts have been associated with propagation downward to the ground 
from jet-stream heights (Madden & Claerbout 1968) and this has been reflected 
in setting up this model in that the wind in the lower portion of the model is 
zero and the source is located at  the top of the model in a region of non-zero wind 
(measured relative to the ground). The orientation has no bearing on the wave- 
wind interaction and no effects attributable to the presence of a rigid surface 
beyond the critical level (as seen from the source) have been observed, so the 
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FIGURE 3. Development of the change in the wind with time. S, = 1.125 m/sec ; Ri = 0.53; 
. . . . . . , t = 1470 sec; ---, t = 2190 sec; - - - - -, t = 2710 sec; - -, t = 3630 sec; -, 
t = 4350sec. 

results of this model may be applied to any wave-wind critical level interaction 
which is not close to some boundary. A wave with A, = 5000m, T = 450sec, 
vpz = 11-11 m/sec is within the range of values commonly recorded by this micro- 
baragraph array so these values have been used throughout except where in- 
dicated otherwise. 

For all the results presented here, a line vorticity source at  z = 6300m was 
used and the wind varied from zero at  the ground to 20 m/sec at  the top of the 
model. Except in one case (discussed below) the wind speed was a linear function 
of height, being constant above and below the shear layer and having a constant 
first derivative (or shear) within that layer. The bottom of this shear zone was 
maintained at  2000 m and different Richardson numbers and shears were 
obtained by varying the height of the top of the shear zone. Placing the top of 
the shear zone at 2400m, 2800m and 3600m gave Richardson numbers of 
0.133, 0.531 and 2.12 respectively. A constant Brunt-Vaisda period of 345sec 
was used. The background d.ensity was that of an isothermal atmosphere, 
p = 1.225 exp ( x / H )  kg/m3 with H = 8440 m. 

The development of the reference case, Richardson number = Ri = 0.53, 
S, = 1.125 m/sec is shown in figure 2 by means of a sequence of contour plots of 
u, the horizontal component of the perturbation fluid velocity (z, indicates the 
height of the critical level). The propagation of the wave downward from the 
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source and its interaction with the shear layer are evident. Note that by 1830 sec 
the wave pattern above the shear zone is very similar to that of a standing 
wave and that after 2550sec there is little change in the basic pattern. The 
change in the wind continues to increase, however, as shown in figure 3. The 
values of the wind, Richardson number and the Fourier components of u at  
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FIGURE 4. Wind 8, = 1.125 m/sec; Ri = 0.53; 
--- , original wind; --, total wind at t = 4350 sec. 

Richardson number, Ri 
FIGURE 5. Richardson number. S, = 1.125 m/sec; - - -, original; -, t = 4350 sec. 
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t = 4350 sec, after almost ten wave periods, are shown in figures 4-7. It is obvious 
that the interaction of the wave and the wind occurs above the critical level and 
that only a small fraction of the wave motion gets through the shear zone. Note 
that the Richardson number has increased at the critical level. By 4350 sec the 
critical level has moved up to 2472 m from its original location at  2444 m. (It is 
assumed that the wave is moving with the horizontal phase speed of the source 
in determining the position of the critical level.) 

3000 
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FIGURE 6. The magnitude of the Fourier components of the horizontal component of the 
perturbation velocity at t = 4350 sec. 8, = 1.125 m/sec; Ri = 0.53; - - -, fundamental; 
-, constant; - - -, second harmonic. 

It is clear from the contour plots in figure 2 that a situation very close to the 
steady state has been reached in the latter stages of this case. The attainment 
of near steady state is also borne out by various other figures. For example, the 
maximum values of the absolute values of the fundamental of u and p reach 
their peaks of 1-75 m/sec and 0-00242 kg/m3 respectively at 2190sec and by 
3630sec these values have dropped back to 1.17m/sec and 0.00150kg/m3 and 
they oscillate about these values thereafter. The minimum Richardson number 
present at any time has its lowest value, 0.321, a t  2910sec and by 3630sec 
it has returned to 0.350 where it hovers thereafter. The change in the wind 
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continues to grow, of course, but its growth is slow, the absorption of new momen- 
tum being offset to some extent by the slow diffusion of momentum outward 
from that height where the change is greatest. It appears that the increase in the 
change in the wind and its diffusion, and the amount of incident energy and 
momentum absorbed by the shear layer are balanced in such a way as to 
maintain the minimum Ri at 0.35. 

I I I 1 1 I I 

Horizontal perturbation speed (mjsec) 

FIGURE 7. The magnitude of the fundamental component of the horizontal component 
of the perturbation velocity. t = 4350 aec, S, = 1.125 m/sec, Ri = 0.53. 

It is impossible to separate accurately the upgoing and downgoing wave com- 
ponents in a finite-difference model such as the one reported here but from the 
values of the peaks and nodes of the components of the perturbation motion above 
and below the shear layer one can estimate the portions of the incident wave 
energy which are being reflected and transmitted. Because the kinetic energy 
of the vertical motions is easily derived from the kinetic energy of the horizontal 
motions only the portions of the horizontal kinetic energy which are reflected 
and transmitted have been calculated. In  figure 7, for example, the maximum 
at 4200m is the sum of the contributions of the upgoing and the downgoing 
wave, urnax = %down + uup, while the minimum at 3300 m represents their dif- 
ference, urnin = Udom - uup, and the reflectance would be ( ~ u ~ / ~ a ~ ~ ~ ) ~ .  (Over- 
reflectance in which ~u~ is greater than Udown may be distinguished by the sign 
of the Reynolds stress.) For this reference case at  d = 4350 sec about 40 yo of 
the incident horizontal kinetic energy was being reflected and about 0.2 % was 
being transmitted. Because the second and higher harmonics are evanescent 
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outside the shear layer, only the fundamental need be considered in these 
calculations. It is clear from figure 1 (a) that these reflectance and transmittance 
values depend somewhat on the spacing but no great accuracy is claimed for 
these figures in any event. 

For comparison, in the steady-state case, where there is no shear layer and the 
wind speed changes abruptly from 20 m/sec to zero: the linear solutions, ignoring 
the presence of a critical level, give a reflectance of 65% and a transmittance of 
0.01 %. For further comparison, this case was run with the non-linear terms 
removed from the model and the reflectance was about 20% and the trans- 
mittance about 0.4%. (These numbers refer to the kinetic energy of the horizontal 
component of the x-dependent motion.) The non-linear coupling between the in- 
cident wave and the wind and the resulting change in the wind somehow approxi- 
mately doubles the size of the reflected wave but no details as t o  the basic 
mechanism by which this is accomplished are available. The other major dif- 
ference between the non-linear and the linear model, in addition to the lack of 
any coupling to the mean flow or higher harmonics in the linear model, was that 
the maximum of the fundamental of u was about 60 m lower in the linear model 
than in the non-linear model. 

For this reference case then, it appears that slightly more than half of the 
horizontal kinetic energy of the incident wave is being absorbed in the shear 
layer. It is difficult to ascertain how much of this energy goes into the mean flow 
and how much goes into shorter wavelengths and eventual turbulent dissipation, 
but it appears from this model that the bulk of the energy goes into the mean 
motion. The wind speeds outside the shear layer are such that perturbations 
whose horizontal wavenumbers are integer multiples of the source wavenumber 
are evanescent outside the shear layer, so that any energy in these modes is 
trapped within the shear layer. 

In  addition to having S, = 1*125m/sec, the case in which the Richardson 
number was originally 0-53 was also run with source strengths of 0.281, 2.250 
and 5.625 mlsec. With S, = 2.250 mlsec the portions of the incident wave being 
reflected and transmitted at  t = 4350sec and the minimum Ri were almost 
identical to those for S, = 1*125m/sec. The maximum values of the absolute 
values of the fundamental component of u and of the change in the wind were, 
however, about twice as large and were located at about 2600m instead of 
2550m for the smaller source. The possibility that the reflectivity and trans- 
mittivity depends only on the minimum value of Ri was ruled out by the results 
with S, = 0.281. Here the system reached a nearly steady state about 3000sec 
but the minimum Ri never fell below 0.50, yet the reflectivity was only slightly 
lower, about 30 yo. With such a small incident wave there was very little change 
in the wind. 

The results are difficult to interpret for the largest source, S, = 5.635 m/sec. 
The incident wave was so large that non-linear interactions near the source and 
far from the shear layer created a jet there, driving the total wind speed below 
the horizontal phase speed of the source and creating another critical level. The 
wind change was aIso large just above the critical level but the maximum of the 
wind change was very close to the top of the shear layer and therefore no region 
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of high shear and low Ri appeared. As this case progressed the Reynolds stress 
became negative over much of the height range above the critical level, which 
had been as high as 2760m and began t o  move downward as the change in the 
wind decreased. Because of the large non-linear interactions which occurred out- 
side the shear zone such large sources were avoided thereafter. 

Before discussing the effect of varying the Richardson number one additional 
case must be mentioned. To ascertain whether the discontinuous shear of the 
piecewise linear wind profile had a major effect on the events near the critical 
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FIGURE 8. Richardson number for the case where the wind was originally a hyperbolic 
tangent function of the height. S, = 1.125 m/sec; - - -, original; -, t = 4350 sec. 

level the term involving the second derivative of the wind was added to the 
equations and the Ri = 0-53, S, = 1-125m/sec case was run with a hyperbolic 
tangent wind profile. The maximum shear and minimum Ri were the same as 
for the linear wind profile, but in this case they pertain only to the midpoint of 
the shear layer, z = 2400m. The Richardson number as a function of height is 
plotted in figure 8. Por this wind profile the portion of the incident wave which 
was transmitted was about 0.6 yo and the portion reflected was about 30 yo. The 
maximum change in the wind was about twice as great as with the linear wind 
profile and was centred about 50m higher. The minimum Ri remained around 
0.52 after 2900 sec but maximum of the absolute value of the fundamental com- 
ponent of u did not stop increasing as it had done in the other cases. The details 
of the critical level interaction, then, depend on the wind profile but the basic 
nature of the interaction does not. 

The case in which the Richardson number was 2.12 was run for source strengths 
of 1.125 and 0.281 m/sec. The development was much the same as in the Ri = 0.53 
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cases except that the pace of the interaction was much slower, that is, at  
t = 4350 sec the steady state had not been reached for either source. The minimum 
Richardson number was still decreasing at 4350sec and was 0.67 for the larger 
source and 1.88 for the smaller. At this time, for both sources, about lo-* of the 
incident energy was being transmitted through the shear layer. The incident wave 
energy reflected was about 4 % with the larger source and 9 % for the smaller 
source. 

Change in the wind (mlsec) 

FIGURE 9. Change in the wind. S,  = 1.125 m/sec, Ri = 0.13, i? = 3270 see. 

For the case of a dynamically unstable shear, Ri = 0-133, source strengths 
of 1.125 and 0.281 m/sec were used. For the larger source the results blew up at 
3540 sec but with the smaller source the program ran to termination at  4500 sec 
as usual. The change in the wind is shown in figure 9. The positive wind change 
below the critical level was not present when the Richardson number was greater 
than 0.25. Furthermore, there were large abrupt fluctuations in the Reynolds 
stress. For the large source, for example, the Reynolds stress which had been large 
and negative below 4500 m at 2550 sec was large and positive by 2910 sec every- 
where except in the shear layer, where it remained negative. For both sources 
about 6 yo of the incident energy was being transmitted just before the program 
terminated, but with the larger source about 35 % of the incident energy was 
being reflected a t  3270sec while for the smaller source about 130 % of the 
incident energy was being reflected a t  4350 sec. I n  the case of the smaller source 
the Reynolds stress is negative from the ground to 5000m, so that the larger 
component is the upgoing wave rather than the usual downgoing wave and 
over-reflexion is taking place. 
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5. Conclusions 
The results of this model were different from those of the linear predictions 

in that a large portion of the energy was reflected from the critical level. Also the 
portion of the wave transmitted through the critical level was considerably 
below that predicted by Booker & Bretherton (1967) for low Richardson numbers 
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FIGURE 10. The ratio of the kinetic energy of the horizontal wave motion transmitted 
through the shear layer of that incident upon the shear layer, as a function of Richardson 
number. 0 ,  S, = 1.125; x , S, = 0.281; T, Tanh wind, S, = 1.125. 

as shown in figure 10. I n  the case where originally Ri = 2.12 the portion of the 
incident wave’s energy transmitted is fairly well estimated by Booker & Brether- 
ton (1967). The conclusion from their work and the present study is that for 
large Richardson numbers a negligible amount of energy is transmitted through 
the critical level and most of the incident momentum and energy is absorbed 
near the critical level. 

It seems safe to conclude that a shear layer containing a critical level with a 
Richardson number less than about 1.0 is sufficiently reflective to act as a leaky 
boundary and cause trapping. No explicit predictions of this on the basis of the 
linear theory are known, but in general linear wave theory it is well known that 
any substantial change in the impedance of the propagation medium in a distance 
short compared to the appropriate wavelength will cause reflexions. If an internal 
gravity wave is to be propagating (as opposed to evanescent) in zero-shear layers 
above and below the shear layer, then a Richardson number less than unity 
implies a shear so large that the maximum extent of the shear layer will be some 
fraction of the vertical wavelength (calculated for one of the zero-shear layers) and 
thus this reflexion could have been foreseen from the linear theory. The contention 
of Jones (1968) that over-reflexion would occur when the Richardson number was 
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less than 0.25 has been borne out (as shown by the sign of the Reynolds stress). 
No steady state with over-reflexion was ever reached in the present model but 
with the basic system being dynamically unstable this is not surprising. 

It would be helpful if the atmount of incident energy reflected depended in 
some simple way on the wave magnitude, the overall Ri or the local Ri, but such 
a relationship has not been observed. About all that can be said is that the 
reflectivity is about 35 yo in the case where Ri was 0-53 originally, about 7 yo 
in the case where Ri was 2-12 originally, and that reflectivity probably becomes 
negligible for Richardson numbers greater than 5. 

As mentioned above, in the case where the large (8, = 5*635m/sec) source 
was used non-linear interactions near the source generated a jet, and eventually 
a critical level, in a region which was initially free of shear. From this it may be 
concluded that for regions of zero shear when the horizontal component of the 
perturbation velocity approaches or exceeds 10 % of the horizontal component 
of the phase velocity, the non-linear effects will cause significant changes in the 
average motion of the atmosphere and, if these forces act for a sufficient length 
of time, a jet will eventually develop, perhaps followed by the appearance of a 
critical level if the magnitude of the jet increases sufficiently. The development 
of a critical level depends on the rate at which the wave puts momentum into 
the jet compared to the rate at  which the viscosity causes the jet to become more 
diffuse. For p = 2 kg/msec it appears that when the ratio lzcl/v,, is about 15 % 
the jet will continue to grow until a critical level is present, but if this ratio is 
about 10 yo the maximum speed of this jet falls far short of that necessary to give 
a critical level. There is then, a maximum amplitude for the unhindered propaga- 
tion of internal gravity waves and a wave exceeding this value will create its 
own critical level and be largely absorbed into the mean flow there. 

There are two aspects of this study that may need further clarification. First, 
this study has been strictly two-dimensional whereas gravity waves in the real 
atmosphere are of a scale that is not entirely three-dimensional and yet cannot 
be represented in two dimensions to one’s complete satisfaction. Because of the 
basic difference of turbulence in two and three dimensions and the tendency for 
motions to move to larger scales in two dimensions and to move to smaller scales 
in three dimensions (Onsager 1949; Fjortoft 1953), it is possible that the division 
of the absorbed energy between the mean flow and smaller scales of motion and 
eventual turbulence shown by this model may not correspond accurately to the 
real atmosphere. Until sufficiently detailed experiments are conducted or three- 
dimensional computer models become less expensive, this matter will have to 
remain open. 

Further, some authorities may claim that the top and bottom boundaries 
have a significant effect on the events around the critical level in this model, 
The author does not believe this to be true. It is certainly true that the wave which 
passes through the shear layer is reflected by the lower boundary. The wave 
below the shear layer is observed to be very nearly a perfect standing wave. 
However, the magnitude of the wave entering the shear layer from below is 
always so much smaller than the wave entering from above that its effects are 
negligible. Further, no effects of a wave entering the shear layer from below have 
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been observed. As for the upper boundary, the nature of the mirroring is such 
that until the incident downgoing wave has been reflected and made its way 
back to the source there is no possibility of the upper boundary influencing events. 
It is possible that in the latter stages of the cases in which the reflectivity was 
highest the top boundary condition has the effect of increasing the source 
strength by reflecting the upgoing wave back down again. If this is true it has 
taken place in such a way that the additional downgoing wave motion is in 
phase with that from the source which, although possible, seems rather unlikely. 

This research was initiated at the Massachusetts Institute of Technology (a 
portion of it forms part of the authors doctoral thesis) and was completed a t  
the National Center for Atmospheric Research. The work at M.I.T. was sup- 
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contract number DA-31-124-ARO-D-431. The National Center for Atmospheric 
Research is sponsored by the National Science Foundation. I am grateful to 
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